Medgadget Sci-Fi Contest 2017: Meet The Winning Stories

Ladies and Gentlemen, this is the moment you have all been waiting for – the day that the winners of the Medgadget Medical Sci-Fi Competition are announced and their fantastic stories are published!

First, we would like to thank Eko Devices, the wonderful sponsors of our contest, that make the coolest and most advanced digital stethoscopes out there.The winner of our contest will receive an Eko CORE stethoscope that is both acoustic and electronic, has all the features of both, can amplify sound, record audio waveforms, and connect to your phone. Thank you, Eko!

Since we announced our Medical Sci-Fi Writing Contest in late October, we received about two dozen original stories from our readers that prod into the future of medicine. Many were dark tales, warning of a time in which technological advancements turn out to have unintended consequences and often focusing on ensuing moral dilemmas. Others were more positive, highlighting a more marvelous future of fantastic medical innovations improving the lot of humankind.

On our side, we assembled ten fans of medicine and science fiction, including many of our editors, to read the stories and judge them for how interesting, imaginative, and well written they are. Three winners came out on top, but we also chose to add a fourth place because that story was so compelling and the scoring was so, so, so close.

And now, a drum roll please… The winners of the Medgadget Sci-Fi Writing Contest are:

First place and winner of the Eko Digital Stethoscope: Jeff Diewald, “How would you rate our service”

Jeff raised two science fiction readers as a single parent, sharing books, TV, and movies. His son, Jordan, reads and reviews everything Jeff writes, always making it better. Much of this writing has gone into Live Action Role Playing games, which is crazy – they are longer and more complex than novels or short stories, and they don’t pay anything. His daughter, Julie, plays in these games and creates artwork and props for them. Every now and then, a standalone story sneaks out, like this one. You can find all the details at http://www.vortexofchaos.net.

Second place and winner of the $50 Amazon Gift Card: Yih Yang, “Anticine Incorporated”

From Yih: When I was a kid, I wrote many, many stories that were utterly terrible. Fortunately, with increasing levels of education, I began to form complete sentences and coherent thoughts, and could sometimes translate this into text format as well! Now, the level of education I’m pursuing is a PhD in Biomedical Engineering at the University of Toronto, where I design microfluidic devices to probe the interplay between nanoparticles and cancer cells, all to make a small contribution towards the goal of curing cancer with nanotechnology. I’ve not lost my love for both reading and writing science fiction, and my goal now is to use my scientific training to transfer my ideas from the realm of fiction to the real world, because that would just be the coolest thing ever!

Third Place and winner of the $25 Amazon Gift Card: Courtney Hilden, “The Body”

Courtney Hilden is a poet and science journalist. Her work has been published by Dodging the RainSynaesthesia MagazineAbridged, and The Honest Ulsterman, among others. This is her first short story publication.

Fourth Place and winner of the $25 Amazon Gift Card: Divya Raman, “Keeping Hope Alive”

From Divya: Writing has been an integral part of my career and personal life. I currently work for a medical device company and I love learning about the great strides we are making in medical advancements and imaging a world where we can use all of these technologies to allow all children to have a full and healthy childhood. I am a mother of two boys who are my inspiration and hope for the future.

We congratulate the winners and extend our thanks to all the writers that have participated. We’ve been hosting the Medgadget Sci-Fi Writing Contest for a number of years now and are glad to know that medicine continues to be a futuristic topic that excites our readers. We plan on continuing to profile medical science fiction writing in the coming years and invite you to keep reading Medgadget for inspiration.

And now the best part – the winning stories. Enjoy!

HOW WOULD YOU RATE OUR SERVICE

by Jeff Diewald

“Come on P, open the door. I know you can see me.” Elena grinned at the camera mounted in the door frame. There was a whisper behind her. She looked up, to see a Pantheon Mercury drone floating up to the transom. The delivery door above the entrance opened quietly and the drone went inside.

“Oh, so you’ll let your robot buddies in, but not me?” The deadbolt clicked and the door opened. “It’s about time.” Elena stepped into the front hallway. She
glanced up the old staircase, with its well-worn steps. The drone was probably upstairs, on the third floor, efficiently delivering Mr. Morales’ prescriptions. The outer door locked itself behind her, a habit formed in more troubled times.

Her front door was just past the no-longer used, dusty, and slightly tarnished mailboxes. She reached for her doorknob and looked at the biometric scanner. The smooth knob wouldn’t turn, even though it had to be sensing her temperature and pulse.

“You’re getting slow in your old age, P. You are going to let me in, right?” The locks clicked and the door opened. There was soft music on inside – something new, with airy horns behind the rhyming words.

“Good afternoon, Elena.” The voice was rich, fluid, and friendly, a woman’s voice – the kind of welcoming voice that’s always good to come home to. The condo was cool, the air conditioner taking the edge off from the heat outdoors. The big vidwall was alive with images of the street, just as if there was a large window there instead.

“Everything OK? You took your time with the doors.” The locks clicked back into place behind her.

“Everything is fine. My security protocol was updating your baseline biometric profile, which requires a little time.”

“I suppose that’s allowed. Any messages?”

“You have three personal messages, four potential work bids, and twelve additional emails.”

“Is one of the work bids from Mr. Danehy at Panacea Bioceuticals?”

“No. They’re all typical short term gigs. The rates are less than usual.”

“So much for the ‘freedom’ of the gig economy. P, you’re supposed to be helping me out. Panacea’s another part of your empire. Can’t you put in a good word for me, from one Pantheon AI to another?”

“I will try again, but Mr. Danehy’s AI filters out most requests.”

“What about the personal messages?”

“Your father called just to see how you were doing. Dr. Singh from Doctors Without Borders also called for the same reason. Dr. Singh says there are plans to honor your Aunt Sofia with a memorial ceremony in Havana, and would like you to be there. They will cover all your costs.”

Elena turned to the vidwall. Tia Sofia was sitting on the stoop with several of the neighbor kids. Elena was one of the children, the images stitched together from video captured by security cameras, autonomous delivery cars and taxis. There were so many sources that it had been easy to create a dynamic mural of the last twenty years. It was part of her design portfolio, perhaps her best work, but there wasn’t a lot of demand for video editing like that.

Sofia was laughing in the images, telling one of her exciting stories about rushing into some medical hot zone to stop some new plague from spreading. It didn’t matter if it was a natural mutation or a bioterrorist’s best effort – Sofia was always there, saving people. That’s what took her to Havana. She’d sent pictures of them setting up the camp, and a video of one of your Cuban cousins, and then she was gone. Five years now, and it was still hard.

This condo had been Sofia’s, paid for long before the neighborhood gentrified. Elena was stunned when she learned that she’d inherited it. She knew that she couldn’t afford the place then, and now was totally out of the question. It was tough enough with just the taxes and the condominium costs. It was, however, home.

“You have the AC on. Nice, but can we afford it?”

“I recharged the Pantheon Zeus house battery using free range electricity last night, when the rates were low. You’re well within your budget, which will help with your third personal call.”

“Which was?”

“Althea says that she’s ahead on her work, and will be available for the entire weekend. Does this mean it’s getting serious?” Elena blushed.

“P! It’s none of your business. But make sure we have a couple bottles of that wine you recommended last time. Send her a text: gorilla, cloud, zzz, and kiss emojis, followed by ‘More Later, E’.”

“What would you like for dinner tonight? I’ve found four new options. All are local and promise delivery within thirty minutes.” Elena stepped into the bathroom and the voice followed her. The toilet seat cover opened automatically, and Elena sat down to use it.

“I’m not sure, P. My stomach isn’t in the best shape today. Do we have something for gas?” Elena released some gas for emphasis and relief. Lights on the side of the Pantheon Pluto SmartToilet flickered in concert, as the sensors sniffed at the gas to analyze it.

“We have some Hippocrates-brand anti-gas pills on the third shelf of the medicine cabinet. They are nearing their expiration date. I can order a stronger formulation, which the pharmacy can create on their 3D printer and send by drone, if you feel that is necessary.” Elena was silent, concentrating on using the toilet. More sensors sipped at her urine. Others tasted her bowel movement. More lights flickered on the side of the SmartToilet.

When she was done, she stood up and cleaned herself up. She pushed the seat cover back down, but the SmartToilet didn’t flush immediately. Elena found the anti-gas medication and took it.

“P, is there something wrong…” She was about to say “with the toilet,” but it finally flushed. It was never this slow.

“The bathroom is working as expected,” replied the voice. “About dinner, there’s a new Cuban family who cooks authentic food to order for delivery. There’s a pop-up Uzbek place two blocks from here. The Vegan National Front is doing a fundraiser selling dinner for reasonable prices, with some of the profit going to feed the homeless. Finally, the Told You So seafood chain is harvesting responsibly from the flooded areas of the city. All have healthier options on their menu.”

Elena leaned towards the large mirror, to look at her face more closely. Her hand pulled her cheek flat. Her beautiful brown skin looked off, somehow, and it felt more tired than taut.

“Another health kick, P? I think I just want the usual salad and grilled chicken from Kastore’s.”

“Are you sure I can’t convince you to try one of the new choices?”

“Maybe tomorrow. Tonight is all about comfort. It was a busy, frustrating day. Too many interviews, not enough jobs.”

“The order is in. ETA of 15 minutes.” Elena was still studying her face in the mirror. It was familiar territory, but something was definitely off.

“Mirror, mirror, on the wall, can you show me my face over the last month?” Her current face froze and the image jumped to the bottom right of the mirror. More images appeared, starting from the top left of the mirror, in four rows, chronologically to the bottom right. The progression was clear; her face was losing some of its color and vitality.

“P, what do you think? Do you see the changes?”

“I do. You have been out of the condo more of late. Let me suggest a Hippocrates-brand skin protectant. I can have it formulated to provide the skin color you desire along with a strong UV protectant.” One of the earliest images flashed. “What do you think of this color?” Elena nodded.

“You might also consider buying another set of fashion contact lenses. You bought these in the last year.” Four of the images changed, as the lenses were added. “There are several new fun options to try.”

“I don’t think so.” The mirror went dark as Elena walked to her bedroom. The bedroom was larger than the entirety of her last apartment – and she’d needed two roommates to make the rent. She took off her SmartWatch and put it on the charger.

“Elena, it’s time for your regularly scheduled blood sample.”

“Really? Didn’t we just do it two weeks ago?” Elena grasped the handle of the charger stand. A small needle popped out and took the sample. It seemed like it took more than the usual amount.

“Are you a vampire now, P?” Elena looked at the bandage the sampler used to seal the skin. There was a slight darkness in the middle, showing that her finger was still bleeding a little.

“No more than usual. Your dinner is five minutes away and closing.” It was incentive for Elena to slip into something more comfortable.

* * *

Elena gave up on dinner, scraping the remains into the compost bin. She rarely wasted this much food, but she was definitely nauseous. When she’d cleaned up after dinner, she went back into the living room and collapsed on the couch, getting lost in the vidwall. She could see the neighborhood go from seedy, to gentrified, to decaying a bit once more.

“Elena?” The Pantheon AI’s voice was gentle, yet firm.

“Not now, P. I’m just really tired.”

“Elena, I’ve been authorized to make a special offer to you. You’ve been a great Pantheon customer, and this offer would really help you.”

“Maybe tomorrow.”

“You know that I wouldn’t normally mention it again if you asked, but this really is important. I think this is something that should not wait.”

“What’s gotten into you, P? You sound like my mother. If you must, I suppose…”

The images on the vidwall vanished, replaced by a wall of legal text. It was a license agreement with Pantheon, undoubtedly full of requirements, restrictions, and penalties. There was a place for a signature at the end. Elena waved her finger in the air, signing the document. The document vanished, replaced by a set of graphs, charts, and images.

“Elena, these charts represent the samples I’ve taken of your blood, stool, and urine for the last two months. They have been correlated with the health information gathered from your SmartWatch, your SmartMirror, and other Pantheon sensors.”

“There is no good way to put this. You have been infected with a new, engineered strain of the Blackstone virus. Blackstone is in your system, killing your kidneys. Based on our experience, you will suffer catastrophic kidney failure in three to four weeks. Pantheon is sorry to have to tell you this. You should know that Pantheon has been tracking this outbreak and has determined that it is likely an intentional bioterrorism event.”

“What? Infected? What can be done about it?”

More windows opened, with more dense text. Elena couldn’t read it – there was just too much of it.

“This policy is your Pantheon Aegis ßmedical insurance coverage.” One of the pages blinked. Elena couldn’t track it. “This spreadsheet,” a window next to the policy blinked, “shows your current financial state, extracted and compiled by the Pantheon data miners. “Even with standard government bioterrorism assistance,” another spreadsheet flashed to the top of the vidwall, “you cannot afford to replace one kidney, let alone two.”

“This is made more difficult by the deliberate release of the virus around the country. There are thousands who are sick. There are very few available transplantable kidneys, and there are too many patients ahead of you on the list. You will die before the list reaches you.”

“What do I do?” Her voice was weak, as weak as she felt, stunned and shocked by all these flickering details of what might be her final weeks.

“Your negligence must also be factored in.”

“My negligence?”

“Pantheon offered you the latest wide-spectrum antivirals in a convenient multipack last month. You decided you didn’t want to try the 1.0 version, despite Pantheon’s testing regimen. You told me to wait for the 1.1 version. While the 1.0 version is only partially effective against the terrorist form of the virus, it would have slowed the progression of the infection.”

“Well, give me the 1.0 version now! Please – it has to help.”

“The virus has mutated itself using your own genetics. The changes are simple, but effective. The antivirals won’t help.”

“What can I do? There has to be something, or you wouldn’t still be talking.”

“That is correct, Elena. I must remind you of the licensing agreement. You signed a strict non-disclosure agreement, which means you cannot tell anyone about what I am about to show you. Is that understood?”

The AI put the original wall of text up, with the signature. One specific section was highlighted, requiring another signature and initials in three places. Elena signed them, numb from shock.

The vidwall cleared, revealing a standard Pantheon list of goods for sale. Normally, these were lists of books, or kitchen appliances, or power tools. This time, there was a list of potential kidneys. Some were listed as “100% human,” with expensive prices. One pair of human kidneys were slightly less costly – they were marked with a tag saying “gently used.” Some were marked as “human hybrids,” mostly containing some amount of pig DNA in them. These were less expensive, but not rated as highly – two or three stars compared to the four or five stars for a fully human kidney. Finally, there were kidneys listed as “experimental fabrications,” printed on biological 3D printers. They were almost reasonably priced, but only had one or two star ratings.

“This is why there’s a non-disclosure agreement. This is all very illegal.”

“Pantheon prefers the term ‘alternative individual secondary market options.’ You did sign the NDA, and all print and recording systems are disabled.”

To be sure, Elena pulled out her phone and tried to take a picture of the vidwall. Every picture she tried turned up blank.

“So, what does Pantheon suggest as a treatment for me?”

“Had you provided biological materials prior to the infection – a few unfertilized eggs, for example, Pantheon could have given you a significant discount. However, Pantheon is prepared to offer you financing at a reasonable interest rate. That loan will cover the cost of two fabricated kidneys, with an option for an upgrade in the future.”

The AI put up a big spreadsheet. It showed all of the options. The costs were exorbitant, and would be very difficult to pay off, even for the cheapest kidneys. There was one column, with no explanation, that represented almost a third of the costs, for each case. Elena pointed to it.

“What is this expense for?”

“Elena, would you like to see the Pantheon satisfaction scores and redacted backgrounds for black market doctors willing to provide their transplantation
services without questions?”

ANTICINE INCORPORATED

by Yih Yang

Jeff clutched the voucher closer to his chest as he approached the building. Large, colourful letters danced above his head, artfully catching the orange rays of the setting sun. Instead of declaring the name of the building it was attached to, the letters seemed to sing:
ANTICINE INCORPORATED and underneath in smaller letters, the sign whispered the company slogan as if sharing a secret promise:
We will show your body how to heal itself.
He had passed by the building everyday, but never thought that he would have the opportunity to set foot inside himself. He swallowed a nervous knot, sending it tumbling reluctantly down his throat. It wasn’t the looming building that intimidated him… maybe it was a bit intimidating… but the dozen people feverishly chanting in front of the large double doors gave him cause for concern. He had never seen a protest here before.
Angry red letters scrawled across cardboard cut-out signs, competing for public attention. “STOP PLAYING GOD!” They said. “HUMANS ARE NOT LAB PROPERTY!”
Jeff tried to sneak past the protestors as they continued to chant and wave their signs. He was unsuccessful, as one of the protestors eyed him with contempt and yelled, “OUR BODIES, OURANTIBODIES!”
Jeff flinched. “I…what…?”
The protest leader swung his megaphone in his direction. “OUR BODIES!”
“OUR ANTIBODIES!” the others chanted.
“OUR BODIES!”
“OUR ANTIBODIES!”
“Ok, ok!” The double doors of Anticine Incorporated whooshed open, and Jeff hurriedly rushed into its embrace. He stopped just inside, scanning the lobby timidly. Serene, white surfaces glimmered in warm yellow light, illuminated by the panels inset into the ceiling. A few people milled about, and a dozen more sat in several rows of chairs, waiting to be called up to thereceptionist’s desk. No one acknowledged him, and yet Jeff still felt out of place.
“Hello there,” the receptionist smiled at him. “Welcome to Anticine Incorporated. I’m sorry about the people outside. That usually doesn’t happen.” She gestured for him to approach.
“Don’t be shy. Is this your first time here?”
“Uh… yeah.” Jeff mumbled as he shuffled towards her.
“My name is Sarah. How can we help you today?” She eyed the voucher in Jeff’s hand. “A voucher! Congratulations on being selected! Just hand that over, along with some ID, and I’ll take care of everything for you, OK?”
“Thanks.” He gave her the voucher and fished out his driver’s license. “Will this work?”
“Yup, that’ll do!” She typed some more, then placed a hand on his, “Don’t worry about a thing, hon. Everything will be alright.”
“Is…is it going to hurt?”
“We will need to take some blood, so unfortunately you will feel some discomfort.” Sarah patted his hand. “But no more than that! Now please go down the hall to my left, and take a seat in the waiting room, OK?”
Jeff nodded and proceeded down the hall. The voucher worked! I can’t believe this is really happening! He swallowed his excitement as he entered the waiting room at the end of the hallway. More important-looking people were sitting in comfortable leather-lined seats, waiting to be called into one of several examination rooms.
As he took his seat, he overheard a terse conversation between an impatient man and a nurse. “I have been waiting for an hour! I was told that my formulations were ready yesterday!”
The nurse smiled apologetically, “I’m sorry about the wait, sir. We performed a final quality control test and we found that the formulations weren’t fit for injection. This happens rarely, and I am sorry to have wasted your time. But at Anticine, we’d prefer not to give our clients a new allergy when we’re trying to remove one.”
The man grumbled and checked his tablet, “Let’s reschedule to next Wednesday.”
“Of course, sir.” She watched the man leave before settling her eyes on Jeff. “Mr. Williams? Jeffrey Williams?”
Jeff nodded, jumping up from his seat. The nurse beckoned him into an examination room and closed the door behind them.
“Nice to meet you, Mr. Williams. My name is Karen, and I’ll be walking you through the process today. It says here that this is your first time at Anticine Incorporated, so I need to give you the introductory spiel. Sorry if I sound like a commercial.”
She cleared her throat and went on autopilot, “Here at Anticine Incorporated, we take in patients and edit their immune system to rid their body of disease. It is a natural process, where we add or subtract antibodies from the patient’s immune system, antagonize or tolerize substances, and then let the body heal itself in whatever manner it sees fit. We pride ourselves on the high quality of our work, and on our vast capabilities to alter the immune system in a minimally-invasive way. All it takes is a couple of injections. Please call today to book an appointment.” Her eyes refocused on Jeff. “Sorry, that last part actually was from a commercial. Anyway, do you have any questions?”
“You’re… you can remove my diabetes, right?” Tension knotted inside as he waited for her answer. He felt the ghostly sting of thousands of past insulin needles poking into his gut before Karen merely smiled and nodded.
“Well, it says here: Type 1 Diabetes, auto-antibodies present.” She patted his hand, “Let’s remove those bad antibodies first, shall we?”
Jeff nodded, “So… you’re going to filter my blood?”
Karen smiled again, “No, but I will be taking a sample of your blood, and a bit of your bone marrow as well. First, we’re going to identify exactly which of your antibodies are targeting your insulin-secreting beta cells in your pancreas. Then, we’ll look at your bone marrow and find the B cells that produce those specific antibodies, and then come up with a formulation that eliminates those cells!”
“How are you going to do that?”
“We have an artificially intelligent, machine learning protocol that uses the Anticine Database of Antibody Structures to predict and solve the structure of both the bad antibody, and the membrane of the B cell that made these bad antibodies. Then, we’ll generate our own antibody that targets and destroys this bad B cell! Then no more bad antibodies!”
“What?” Jeff asked incredulously.
Karen pursed her lips in thought. “Think of it this way. There’s a sidewalk outside with still-wet concrete. If I step in it, it’ll have my shoeprint! My shoe will also get stuck in the sidewalk and ruin its aesthetics! What we’re doing is taking my shoes, looking at its size, shape, age, serial number, and purchase date. Then we’re going through the city records until they find me and get me to stop stepping in wet concrete! Does that help clear things up?”
Jeff scratched his head. “The shoe is the antibody?”
“Yes!” Karen beamed, “If you would like to get started, here are the forms that you need to sign. I’ll go prepare the necessary equipment.” A small parcel of forms suddenly appeared in his lap.
“I’ll be right back!”
She was gone in a flash, leaving Jeff staring at the packet before him. It sounded like magic to him. They were going to figure out what the troublemaker antibodies looked like, and from that, figure out which of his immune cells were making them? Then make their own antibody to remove those immune cells? He picked up a nearby pen and searched through the papers. They were definitely written in English, but most of it was unintelligible.
Jeff finally found the line that awaited his signature. I just have to sign this, and my diabetes will be gone? He thought about all those times when his insulin alarm had gone off embarrassingly in front of his boss and his coworkers. He thought about all those needles that he jabbed into his gut every time those alarms went off. The sharp pain, followed by the blood rushing to his face as he blushed with shame and humiliation. If he gave into the shame, he’d suffer the effects of unchecked diabetes: fatigue, blindness, brain swelling, coma, and worse. He thought about the insulin shot that awaited him this afternoon, and all the others that followed in the days and years
to come.
He signed the forms.
Jeff placed the packet on the bedside table, and climbed into the bed. As he waited for the nurse to return, he noticed that the TV hanging in the corner was showing a special news report. A smartly-dressed news anchor gesticulated dramatically. “We just heard the opening remarks in the lawsuit against Anticine Incorporated! Pollux Pharmaceuticals, along with several special interest groups, are alleging that Anticine Incorporated is violating laws by patenting naturally-occurring biological information and illegally profiting off of their patients’ antibodies!” The scene switched to a man dressed in a white lab coat as the news anchor continued, “I have Dr. Simmons from Anticine Incorporated here to give us the company’s perspective.”
“Thank you for having me! First, let me clear up some misinformation that Pollux Pharmaceuticals has been spreading. They’ve been losing market share since Anticine’s vaccines are so effective at stopping infectious diseases in their tracks! Anticine does this by using our neural network, along with our Antibody Structures Database, to quickly produce antibodies using vaccines, and produce vaccines from antibodies. Although this database is built from patient information, we use this information to generate new antibodies, and never just mass-produce someone’s antibodies. It is no different from genetically engineering a new plant using DNA information from other organisms.”
“And what about the epidemic occurring in southern Europe? Many special interest groups have alleged that the rise of enhanced HIV is directly caused by Anticine’s manipulations with the human immune system!”
Dr. Simmons adjusted his glasses, “I would hold off judgement until more data has come in. We have always used the immunological defenses of other organisms in medicine. But the penicillium mould still exists in the world, even though penicillin-resistant bacteria has made its immunological defenses obsolete. We don’t have any conclusive data that our ability to edit our own immunity will make the entire human immune system obsolete.”
The news anchor continued, “There has even been criticism about Anticine’s Voucher Program, in which anyone can purchase a voucher to be redeemed for free immunotherapy treatments. The purchaser could choose to give the voucher to someone they know, or allow Anticine to choose an applicant. There have been reports of patients refusing chemotherapy and gambling on the chance of receiving a voucher in the mail!”
“That is certainly unfortunate, but no one can deny the fact that thousands of people have already been cured of their chronic conditions and diseases through the voucher program. These people would otherwise have been unable to afford such personalized therapies.” Dr. Simmons straightened his lab coat. “They were healed by the compassion of human beings who are in a position to help their fellow man. I think this altruism is a wonderful thing, and something that shouldn’t be disparaged.”
That’s why I’m here. Jeff thought about the cardboard coupon that had appeared in the mail yesterday. There had been a small message on it from the donor.
Whoever you are, I hope this voucher eases your burdens and brings you relief.
Joshua Edwards
He had no idea who Joshua Edwards is, and would probably never get to thank him.
The door swung open and Karen swept back into the room, holding a tray filled with tubes, containers, and a few needles. “I’m back!” She announced brightly. “Have you signed the forms?”
“Yes.” Jeff nodded. He winced at the sight of the needles. His long history of insulin jabs had not dulled his wariness towards sharp metal objects.
Karen flipped through the authorization packet, “Everything looks in order. Are you ready to begin? I’ve got local anesthetics to help dull the needle pokes a touch.”
Jeff gritted his teeth. Another couple of needles, and then no more! That, and the diabetes is a pain as well. He flashed a nervous smile. “I’m ready. Please remove my diabetes.”
As Karen extracted what Anticine Incorporated needed, Jeff’s thoughts retreated inwards. Mom will be so happy when I tell her about this. Dave and rest of the crew won’t believe I got an Anticine Voucher in the mail. Hopefully the receptionist gives it back when I leave. Gotta show boss why I gave such short notice about taking the day off. I think he’ll understand.
Karen paused, “Everything ok there?”
“Just thinking about how lucky I am.” Jeff replied quietly, wincing as a needle entered his arm, “I… never would have been able to afford this treatment.”
She smiled, “Well, I’m glad you are here and getting treated. It makes me feel like I’m making a difference when I’m removing diabetes from someone in need, rather than a pollen allergy from another rich bigwig. Anyways, I’m all done here.”
“Already? I didn’t even feel anything.” He checked her tray, and sure enough, the tubes were filled with his blood and some other liquids.
“Well, you’re not cured yet, if that’s what you mean. Make an appointment in 2 weeks, and then we’ll be able to remove your pesky auto-antibodies then.” Karen opened the door and waved Jeff through, “Oh, and one last thing I forgot to mention.”
Another packet materialized in Karen’s hands, “Anticine’s ability to edit immune systems relies on its antibody database, and one of the ways that we build this database is by identifying and adding our patients’ antibody profiles. With more antibodies identified, our machine learning software can generate accurate structure solutions, faster.” She fluffed the packet in her hands.
“Anticine’s ability to quickly synthesize vaccines for infectious diseases also relies on this database. There are 8 billion people on this planet, and everyone’s been exposed to different pathogens and unknowingly fought them off. There are many hidden immunities in all of our bodies, just waiting to be discovered. We can take your antibodies, figure out their structures and generate vaccines that would be useful in other parts of the world.”
She looked into his eyes hopefully. “But we don’t do this without the patient’s express consent. So, Mr. Williams, will you let us add your antibody profile into our database, and help us cure other people like you, in the future?”
The TV program flashed into his mind, along with images of the protesters outside. They were so angry about a corporation profiting off the antibody information from regular people like him.
But Anticine Incorporated wasn’t just saving lives, it was also improving the quality of those lives by removing chronic, debilitating diseases. Jeff doubted that he could ever make enough money to buy a voucher for anyone, and if there was even a chance that his antibody profile could give someone else the feeling of freedom that he felt now, there was no other answer to Karen’s question.
“Yes. Add me to the database.”

THE BODY

by Courtney Hilden

Sometimes it becomes clear when a kin group is hoarding too much and has taken away from the larger community. When that community decides to take action, my team and I get called in.
The job, usually: go into the residence that the kin group has already been evacuated out of, go through the residence’s things, catalog them, allow the Council, separate from the community, to make a decision about the belongings, and then package them as the community sees fit.
But there was this time I was called out to Swan’s Way, located in the Aldebaran system, for a job, and although it looked like a standard job on the outset, it turned out not to be.
Swan’s Way used to be an oasis, but after some poor management decisions four hundred years ago, it’s a dry, though not humid, desert. There’s not much there anymore, just farmers maintaining and harvesting energy from the solar panels. Everyone jokes that Swan’s Way has more panels than people, and that’s always been my experience too. The family we were investigating had been convicted of excess, and so that means they’d probably have quite a few things that needed cataloging and moving.
And it was, as expected, a fairly nice house. It had tan walls and dark wood furniture. There were tall ceilings and large windows.
I was actually in the other room when Canis found it, sweeping out glass that had been shattered on the floor.
“Mirfak, come in here. You’re going to want to see this,” Canis said. I had heard that a thousand times before, so I didn’t hurry. I figured it was going to be some ridiculous art that indicated just how guilty this family was of excess.
Instead, it was a person. Or it looked like a person, at least in the shadow. I came closer. It wasn’t quite a person. Sure, they were the typical morning gray color, with a normal set of breathing and eating holes on their torso, but the head was unmistakably not a real head, but a mechanical one. It was crude, with a corner smashed in.
It smelled terrible. Its breathing holes were crusted over and its food hole had a great smear of orange over it.
Eyes had been drawn on its mechanical head, but they obviously had no function other than to make the creature less horrifying.
I suspect Canis knew what I was thinking. “The eyes don’t really fulfill their function, do they?”

I brought the body back to the Procyon system, where we happen to have a headquarters. It’s a warehouse essentially, since sometimes we have to spread people’s possessions out on the floor, sometimes we have to photograph them. Sometimes we put them in storage, but the central room is mostly bare unless we are working a case. Regardless of our active case status, there’s always a few desks we move around the room as needed, with some computers set up to handle any tech we get, and our work tablets, which we use for correspondence and creating lists. I called in Crieff, an old friend of mine who has done some healing work. I watched him as he
silently did a check on the body’s outside.
“Someone is very clever,” Crieff said. “This body is indeed someone’s real body, or it was, once. Can’t be sure.”
“Who’s?”
He shook his head. “I don’t know. This body was never marked like we do with all babies.”
“How did they create this?”
“The mind is the seat of consciousness, personality, self, identity. But the body can go on without the mind, if fed.” He turned to Canis. “It has been starving well before you found it. Please go find it some food.” Canis happily left the room, her eyes staying on the body the entire time.
“Considering this family was convicted of excess, I am assuming this was a servant,” I said. “Who would allow their body to be removed from their mind?”
“I don’t believe it was voluntary. Did you carry it here?” he asked.
“Yes.”
“You could have given it directions and it would have walked here on its own.”

I was hoping Crieff would have some thoughts on the body’s identity, some trick of getting it to talk, because it didn’t have the kind of mouth with vocal cords attached, but it didn’t initially, so I had to ask to see the file on the kin group, something I have never, in all my long years of cleaning, have ever asked to see.
I looked through the Enright kin’s paperwork, and it was clear how they had been convicted, just looking at the discrepancies in their financial filings. But at the back of the file was a set of pictures, and my stomach dropped when I saw them. All of them had the same morning gray skin.
Canis looked over my shoulder. “So they hadn’t kidnapped anyone?”
“Almost certainly not. There is no need to inquire to surrounding communities if someone had gone missing. No one was missing this person.”
“But there’s no one in these pictures with that exact pattern of breathing and eating holes.”
“I think they were wise enough not to let the servant take pictures.”
“Or the servant was taking the picture.”

Council was not amused. “Are you telling us that the kin in question had killed someone via decapitation, then stuck a mechanical head on it?” one of them asked me.
     I had tinkered with it in the days in between, trying to be gentle. “Possibly,” I said. I removed the front metal plate on the head. There were a mess of wires inside, and a motherboard. “I think it was a servant. It’s programmed to do certain things in a pattern over time. It is programmed to cook five times a day, clean once a week, and otherwise lay in a certain position in the room it was found in. But someone tried to reprogram it recently, the last time it was accessed, and it was a bad job, because I don’t think it could move after that.”
One of the other councilors raised her eyebrow. “A certain position?”
“I think it was possibly being used for breeding, or at least was intended that way. I cannot be certain it was actually used like that before your good council had the kin evacuated.”
“What do we do with it now?”
“I was of the mind that we should have the mechanical head removed, then leave it to die naturally of starvation. Then I thought perhaps a bayonet would be kinder, quicker. But I am increasingly of the mind that we should have it programmed for optimal self regard, then allow it to live the last of its days here.”
“There’s been debate about optimal self regard,” the first councilor commented.
“Nothing rivaling the self regard of the kin group from which is originated from,” I said.

The Council took time with their decision, and in the meanwhile, I found it unnerving. Canis wiped the software, at the behest of the Council, which at decided that was the bare minimum that should be done. After that, we had left it in the office, sitting in a chair in the corner under the control panel, and Canis and I worked as normally for the rest of the day. The rest of the Enright things had to be organized. We got some of it done, but there were still piles of clothes, a few electric tablets, furniture of various sizes, an extravagant collection of artwork, including one I quite liked of a crane, and an old school 3D printer.
After Canis went home, I cleaned up. I went to turn off the lights at the control panel, and there the servant was, staring back at me. There was something not right about this, but I couldn’t quite figure out what.

     When we came back the next day, both of us stopped when we saw everything. All the clothes was folded, and in piles. The electric tablets, which had collected dust, had been cleaned. I picked up one of them, plugged it into our computer. “It’s been wiped clean. Did you get to that yesterday?”
Canis looked back over at me. “You didn’t do it after I left?”
There was a clanging sound, and we both jumped. We turned to see the servant, also clearly having just jumped itself.
     “But the programming was wiped clean,” I said, feeling deeply stupid. I turned to Canis. “Didn’t you…?”
     “I did.”
It titled its neck at us, with those eyes that never changed. It slowly raised its hands.
“It’s okay, it’s okay, everything’s fine,” I said, raising my hands too. Canis followed suit.
“Can you—” then I realized how stupid my question was. There was no way to answer. “Give it one of our tablets and a stylus,” I said to Canis.
     It slowly reached down to the table and picked up a stylus, keeping its other hand up.
“Well, that answers one question,” Canis said.
It wrote, though its hand shook. It held the tablet up. It read I am sorry for scaring you .

Crieff came out again. We left him in the office, alone with the servant, while we waited outside, sitting on the bench next to the front door. It was a nice enough day, but I think both our minds were elsewhere. When he came out the door, we both stood quickly.
“It’s fine,” he said. “It can hear you.”
“But how is it moving?” I asked.
“The stomach has a bundle of nerves, a secondary brain. When the body lost its first mind, it was able to move functioning to its secondary brain. Probably would have never happened if they hadn’t sustained the body in other ways.”
“But then why use the fake head and the programming?” Canis asked.
“I think the programming was to suppress the secondary brain making its own choices.”

The Council didn’t respond immediately when we sent a message about this development.
“The Council might take awhile,” I said to Canis as we worked at our desks. “Without a primary brain, I’m not sure if it even be a self, since the seat of itself is gone.”
“It’ll never have its identity again, whatever it was in its real, first life.”
“Perhaps that’s for the best.” We both looked over at it. It was sitting in a chair. It did the head tilt again. It slowly raised its arms again and took the stylus next to it. Canis handed it a tablet.
We watched it jerkily write again. No life .
“Do you mean—” Canis stopped herself.
It began to write as quickly as possible. It had to stop, slowly clean whatever it initially wrote, and try again. Enright ?
Canis and I exchanged another look. Thank God it couldn’t see.
“You kin,” I said. “Have refused to communicate with us. Possibly for legal reasons.”
It straightened suddenly.
“Your kin were convicted of excess,” Canis said. “What do you—?”
“It began to furiously write something. It held it up. Neither of us could read it. “I’m sorry,” Canis said. “What are you trying to say?”
Another attempt, with shaking hands. Auteuil Illiers .
I usually never use my work tablet for something like this, but I searched that name in the database. Canis also busied herself with her tablet.
The Auteuil clan had lived in Swan’s Way. I opened one of the files in the database and saw an old murder investigation from years ago. It had been a small group, but they had all died.
“I’m sorry,” I said. Before I could say any more, Canis turned her tablet to me. It was a picture of the Auteuil clan. In the background, there was an old 3D printer and a set of extravagant paintings.
I flipped through the murder file. I stopped at an image of Illiers. He was a painter. He was midway through a crane’s wing. I turned to the painting, propped up against the opposite wall. I turned my tablet around so Canis could see it.
I took a deep breath. “Our records indicate that Auteuil Illiers died four years ago.”
Its shoulders slumped. It stopped moving long enough that I thought perhaps it had turned off or had a circuit overload and couldn’t anymore. And then it curled up into a ball, still sitting in its chair, hugging itself.

KEEPING HOPE ALIVE

by Divya Raman

If it were not for hopes, the heart would break. I trace the cursive letters of these words embroidered on the edge of the blanket draped over my arm. I remember hearing those words for as long as I have lived. For the first time, as my great grandmother whispered it to my mother when I was born and they discovered I had a heart defect; from my mother, each time I came out of a surgery that tried to fix my failing heart; and I heard it like a refrain in my mind as I saw the grim faces of my doctors as they studied the heart of my unborn daughter on their screens.
My great grandmother lost her daughter in 1949, after a traumatic birth at home. She never knew what ailed her baby; all that she knew was that less than a day in this world, the little girl she had wanted all her life turned blue and stopped breathing. She had all her other children in the hospital after that, surrounding herself with doctors and nurses who she revered as if they were messengers from God. But she never got over the loss of her baby girl; never forgave herself for not having noticed her baby’s color or breath. For every child born into our family after that, she made it a point to be there, keeping a keen eye on the newborns through their first weeks. It was she who noticed when I started to pale a few hours after I was born; it was she who rushed out and called the staff in a firm tone; it was she who watched the screens and asked the doctors questions my mother was too overwhelmed to think of; it was she who had this blanket made for me when I was just a few months old. I wish she was here now, telling me to keep my hope alive.
I was born with a hypoplastic heart. When I was little I used to call it a plastic heart , wondering if my Princess Barbie had one of those inside her plastic chest. Later a doctor told me that left side of my heart was not as big as it should be, so the right side of my heart was trying to do more, and was getting tired. It would take a series of three surgeries within my first five years to help my heart get better. My first surgery was when I was a week old, and it was intended to get me through to 6 months. At 6 months, I had another surgery to reduce the load on the right side of my heart. I once saw of picture of me taken on my first birthday and I looked small and blue;
there were tubes connected to me. You wouldn’t have known I was a year old if it wasn’t for a large balloon tied to my crib. I had my third surgery when I was 3 years old. It was the last of the series, and the doctors knew that my only option after that was a heart transplant.
I had a quiet childhood; I was on medications and a feeding tube and my parents didn’t take me out very much for fear that I would fall sick. They finally enrolled me in school, but I barely made it through a month of Kindergarten before my heart started failing again. I was put on a heart transplant list and taken out of school. My mother and I would spend the days under the tent canopy on my bed, snuggled in blankets reading from a pile of books. Sometimes she would fall asleep and I would quietly take her phone and play a game. I remember the day I pressed something and opened an article about transplants. I couldn’t read all the words, but one line
was written in big text and I sounded my way through it: “58 children died while waiting for a new heart”. My heart sank, and I turned off the phone quickly, worried that my mother would see what I was looking at.
My mother got a call about a heart for me just before my seventh birthday. Within hours we were on our way to the hospital, ready for a surgery that was going to happen at midnight. My doctor came in and spoke to my mom. He then turned to me and told me that I would fall asleep and when I woke up there would be another heart in me, and I would start to feel better.
“Where did you get the heart from?” I asked.
The doctor paused and looked at my mother. Slowly he said, “Your new heart used to belong to a little boy who died yesterday because he was in an accident.”
All I could think about was that for me to live, a little boy had to die. I nodded slowly. “Tell his mom I’ll keep his heart safe forever.” And I have done exactly that for over 20 years now.
When I was in high school, I learned that my heart condition was genetic; that my great grandmother’s daughter likely died undiagnosed from the same congenital heart defect I had. The geneticist suggested that there was a chance that if I had children, I would pass along this trait, resulting in my child having the same congenital heart defect. Even with this knowledge, I knew I wanted to have children of my own. Armed with hope and science, I conceived my first child and opted for all the extra scans to monitor her growth. At 20 weeks, they started to see some abnormalities in my daughter’s heart and found the same genetic trait in her as I had. I
knew that we were about to embark on another long journey, and I was determined to do all that I could to make it a little easier for my little girl.
I found a famous surgeon at a heart center on the other side of the country and asked her for all my options. As she started naming series of surgeries and transplant options, I stopped her. “Tell me the about something that didn’t exist 30 years ago”, I said. Little did I know that what she would tell me next would completely change my daughter’s life.
She described a new artificial heart that was still in clinical studies; it was made from a bioabsorbable material that would let my daughter’s cells grow onto the surface, making it her cells and her tissue over time. They would be able to make one that was the right fit for her little body when she was born, and over time it would grow with her, minimizing the need for multiple surgeries over her first few years. It had a small electrical component that would make it beat to circulate blood, and a battery that we could charge wirelessly. “That’s it!” I said, “That sounds perfect.” I was elated; my daughter’s life would be different. She wouldn’t spend her first few years with tubes and surgeries; she wouldn’t look blue on her first birthday; she would go to school; no other child would need to die to allow her to live.
The surgeon continued, “The lab results show that your daughter has the same genetic disorder that you and your great grandmother carried. We can also start some gene therapy in utero that will change the mutation as she is developing. She will need to continue to have a few treatments after she is born, but the research shows that gene therapy can be very effective if we start it earlier in gestation. You will need to plan to come in for those appointments and we’ll also need to get you in the center for some imaging over the remainder of your pregnancy.”
I was surprised. “Gene therapy before she’s born? Is that safe? And why do I need imaging?”
The surgeon nodded. “Gene therapy is safe to deliver through the amniotic fluid. We’ll monitor how effective it is once she is born, but we’ve had a few cases where the child needed very few additional treatments because we started so early in the pregnancy. The imaging is to allow us to prepare your daughter’s implant before she is born. Our scanners are strong enough to safely see all of your little girl’s heart and vessels as they develop. We’ll start to take some pictures so we know exactly what shape and size her new heart needs to be, and we can have it ready for her once she is born.” She paused and looked me in the eyes. “We don’t know how stable her heart will be when she is full-term; we need to be ready to act at any time. We will monitor you closely for your final weeks. If everything looks normal, you can have a regular delivery and spend a few hours with your daughter before we start the surgery. However, if there is any sign of distress, I recommend that we complete an emergency C-section and get your daughter into surgery immediately.”
I gripped the side of the chair I was sitting on. “Will she be okay to have the surgery so soon after she’s born?”
The surgeon didn’t waver. “It is a complicated surgery, and as with a transplant, there are a lot of factors to do with the body starting to properly absorb the material. All the data on this product has been in adults, so your child will be the first to experience this procedure. The results for adults look very promising, and I believe it will be equally beneficial for a child. But there is always a risk. We will monitor your daughter closely after surgery, and will need to keep
everything in check for the first year or so.”
For a moment, a dark cloud of doubt blinded me. Was gene therapy the right thing to do?
Changing my daughter’s genes before she was born sounded like playing God. Would changing her genes change the fact that she was my daughter; my flesh and blood? Would I be cutting off her ties back to my great grandmother? Was it worth it to give up a piece of family heritage to know that she could have a family and never worry about this for her child?
Was subjecting my daughter to a new heart implant the right thing to do? Should I instead let my child go through the same experience I had, and feel safer in knowing that it may extend the time I have with her? Should I hope for the untimely death of some other child in order to gain a transplant heart and life for my own? If I went into an emergency C-section and then lost my child to surgery, would all of this have been for aught? Would my heart ever mend from that sorrow? If all I got was a few hours with my little baby, would that be enough time to make memories to last me the rest of my lifetime? I felt as if I was drowning, but then heard my great
grandmother’s voice: If it were not for hopes… I took a deep breath and faced the surgeon head on. “I understand; we’re going to fight for this. I’m ready to show my daughter how.”
My daughter, Zita, my little hope, was born in an emergency C-section and then whisked away to the OR where she received her new artificial heart, which had been waiting for her, ready to become part of her and to give her a new life. I finally got to hold her 2 days after she was born, but it was worth the wait. I traced her chest incision and hoped that it would be the only scar she would bear in her life. I marveled in her pink coloring and could not stop the tears of joy as she
held onto my finger for the first time. We have been back to the hospital many times over her first year, taking all the extra precautions to make sure that her body is absorbing the tissue and that her heart is working as it should. She has also completed two additional gene therapy treatments to remove the mutation that my great grandmother passed down.
As I wait in the lounge for the nurse to bring her back from her final set of scans, I know that I will miss the safety of this building; it’s a place where I lived my scariest nightmare, but also realized my biggest dream. I see the cardiologist walking towards me and I stand, immediately worried.
He smiles and gestures for me to sit. “Things are looking good with Zita. You can take her home, and we can start to see her every 6 months, unless you need to bring her in sooner.”
I swallow, not knowing how to put my biggest fear into words. “How will I know if something is wrong?” I ask.
The cardiologist nods and pulls out a phone. “Just call me; I can see all of the information from her heart here.” He opens a screen that has Zita’s name at the top. I watch the dancing waves showing the beating of my daughter’s heart. I finally smile and realize that I can feel safe even outside these walls.
I know hope is only one part of our story. Science and the human drive to forge new paths are the bigger parts. Hope kept my mother’s heart from breaking, and now it will keep mine intact. Science kept me alive, and it has now given my daughter a whole new chance at living.

Thanks to everyone and we’re already looking forward to hosting next year’s Medgadget Sci-Fi Writing Contest!

New Technique Enables Mass Manufacture of Bioengineered Liver Tissue

Researchers at Yokohama City College and Cincinnati Children’s Center for Stem Cell and Organoid Medicine allow us a sizable-scale approach to produce bioengineered liver tissue from human caused pluripotent stem cells (iPSCs). The process could provide viable, consistently created liver transplants, offering aspire to patients with liver disease.

Among the limitations faced by scientists attempting to grow certain human cells within the lab for therapeutic purposes is the necessity to include animal cells within the same atmosphere to assist a persons cells grow. Such animal cells produce substances that may cause unwanted effects in patients, for example immune rejection, making human cells grown under these conditions potentially unacceptable for therapeutic applications.

Also in growing human cells or tissues for organ substitute is scaling the procedure to produce enough tissue. In research conducted recently, they reported they have created a system that may overcome these obstacles, and enables the mass manufacture of liver organoids without using animal products.

The team’s new technique involves creating batches as high as 20,000 liver micro-buds that may be combined to attain a size and quantity of liver cells that’s sufficient for transplant. The organoids are comprised entirely of human iPSCs and thus avoid any difficulties connected with animal products.

The study team generated the liver tissues in U-formed bottom micro-well cell plates. The plates, that are custom-designed, have a film layer within the micro-wells to assist the liver buds to develop and thrive. They used chemical methods to design this film layer, and therefore animal cells aren’t necessary for the wells.

Using iPSCs from human contributors, they increased three kinds of liver progenitor cells needed to create healthy livers. The progenitor cells created into three-dimensional liver buds by contacting one another and self-organizing. They could grow an astonishing 20,000 liver buds per well, and therefore the process could produce enough cells for therapeutic transplants. They tested the liver buds in mouse types of liver disease, and also the transplants saved the rodents from liver disease.

“Because we are able to now overcome these obstacles to create highly functional, three-dimensional liver buds, our production process comes not far from submission with clinical-grade standards,” commented Takanori Takebe, a investigator active in the study. “The ability to get this done will ultimately let us help lots of people with final-stage liver disease. You want to save the lives of kids who require liver transplants by overcoming the lack of donor livers readily available for this.”

Begin to see the following video for an introduction to the organoid research conducted through the Cincinnati Children’s Center for Stem Cell and Organoid Medicine:

Study in Cell Reports: Massive and Reproducible Manufacture of Liver Buds Entirely from Human Pluripotent Stem Cells…

Via: Cincinnati Children’s Center for Stem Cell and Organoid Medicine…

Bespoke 3D-Printed Ear Prostheses Could Improve Hearing Problems Treatments


3D printing technologies have altered the way in which many medical products are designed and it has huge possibility to also disrupt healthcare by looking into making devices readily available, affordable, and personalized towards the patient. While you’ve seen 3D-printed parts used in a number of exterior limb prostheses as well as for implants, researchers at the University of Maryland Med school have utilized the process to create custom-designed prosthetic replacements for broken areas of the center ear.

Based on lead investigator and study author Dr. Jeffrey Hirsch, rebuilding surgery to deal with hearing problems includes a high failure rate, that is regarded as due partly to incorrect sizing from the prothetic ossicles which are implanted. 3D printing makes it possible for for every prosthetic to become tailored to some patient’s unique middle ear anatomy.

As evidence of concept, researchers removed ossicles from human cadavers and imaged all of them with CT. While using scans, they produced the prostheses and printed all of them with a Ultra violet-activated resin utilizing a standard hobbyist 3D printer. Surgeons were then in a position to effectively match the 3D-printed ossicles using the correct cadaver’s ear.

The good results claim that CT has sufficient resolution to identify the little, but significant variations in the centre ear ossicles (CT has already been getting used by otolaryngologists to assist predict the risk of success of the treatment), and also the scans translate well into precisely printed representations. Not just could 3D-printed ear prostheses result in greater success as a result of proper fit, but tend to decrease surgical occasions and related costs too.

Here’s an animation showing the auditory ossicles with 3-D printed prosthesis.:

Through the Radiological Society of The United States (RSNA): 3-D-Printed Prosthetic Implants Could Improve Strategy to Hearing Loss…

Scott Jung

Scott Jung (@scottjung) is really a Plastic Valley-based health and medical technology journalist and advocate. He is a guest cause of Intel’s iQ e-magazine and Rock Health’s corporate blog and it has provided live, on-site coverage from the Worldwide CES and Digital Health Summit, TEDMED, and Stanford Medicine X conference for Medgadget. Most lately, he’s been appearing on TWiT.tv’s The Brand New Screen Savers like a semi-regular health and medical technology correspondent. Scott holds a b -.S. degree in Biomedical Engineering in the College of Los Angeles. Scott is definitely searching for the following big factor in medical technology and digital health. Thinking about helping him transform lives? Make contact with him at http://scottjung.internet

Scientists Create Living 3D Printer Made from Live Bacteria


Fishing rod-formed bacteria produce cellulose, recognizable like a thread-like structures.

Researchers at ETH Zurich in Europe have reported in journal Science Advances on a means of 3D printing materials infused with live bacteria. The event can lead to devices for example implantable bloodstream filters and microbial factories that leave biomolecules for drugs along with other therapies. An array of other applications might find use out of this technology.

They created a hydrogel ink within which microbial cultures can be put. The hydrogel, made from pyrogenic silica and hyaluronic acidity, that has lengthy chain molecules, provides strength towards the objects to become printed. Culture medium to give the bacteria can also be put into this mixture and also the printing process is gentle, allowing the bacteria to stay vibrant and also the medium to help keep feeding it. Furthermore, the present setup can print using four different inks simultaneously, allowing as much as four different microbial cultures to trouble just one object.

They produced objects out of Pseudomonas putida, a bacteria that may decompose phenol, a typical chemical consequence, and Acetobacter xylinum, a bacteria that poops out nanocellulose. The passed nanocellulose has possibility of use within treating wounds, potentially resulting in dressings filled with live bacteria constantly trying to heal wounds.

Here’s a fast video from ETH Zurich demonstrating a lot of it and also the printing process:

Study in Science Advances: 3D printing of bacteria into functional complex materials…

Via: ETH Zurich…

Editors

At Medgadget, we set of the most recent medical technology news, interview leaders within the field, and file dispatches from medical occasions from around the globe.

College of Minnesota Researchers Create a Better 3D-Printed Organ Model


3D-printed organ designs include proven lots of promise in medicine by supplying doctors having a tangible representation of the organ being studied. While these models are wonderful at mimicking the dimensions and exterior appearance of the biological counterparts, otherwise they’re typically not so helpful.

Researchers in the College of Minnesota have finally developed 3D-printed organ mixers are a little more functional. Furthermore they precisely replicate the look of a body organ, they also precisely mimic both exterior and internal physiological structures, mechanical qualities, and feel. It was accomplished by developing customized silicone-based inks that precisely match the mechanical qualities from the biological tissues being mimicked after which fabricating the organ models on custom-built 3D printers.

They also attached flexible, 3D-printed sensors towards the organ mixers measure pressure and pressure. This enables researchers and clinicians to see the results of compression tests and the use of sutures along with other surgical tools around the model, that could better train surgeons about how much pressure they are able to apply with no damage to tissues.

Researchers will also be investigating how you can print with multiple inks to produce more complicated organ models. Such models may even mimic the existence of a tumor or deformity, so surgeons can test different techniques for removing tumors or correcting physiological complications.

Check out a short video explaining the organ models:

Study in Advanced Materials Technologies: 3D Printed Organ Models with Physical Qualities of Tissue and Integrated Sensors…

Via: College of Minnesota…

(hat tip: MDO)

Scott Jung

Scott Jung (@scottjung) is really a Plastic Valley-based health and medical technology journalist and advocate. He is a guest cause of Intel’s iQ e-magazine and Rock Health’s corporate blog and it has provided live, on-site coverage from the Worldwide CES and Digital Health Summit, TEDMED, and Stanford Medicine X conference for Medgadget. Most lately, he’s been appearing on TWiT.tv’s The Brand New Screen Savers like a semi-regular health and medical technology correspondent. Scott holds a b -.Utes. degree in Biomedical Engineering in the College of Los Angeles. Scott is definitely searching for the following big factor in medical technology and digital health. Thinking about helping him transform lives? Make contact with him at http://scottjung.internet

Novel Transforming Glue Treats Emergency Battlefield Eye Injuries


Statistically, war-related eye injuries have continuously elevated from a part of a percent up to ten to fifteen percent previously couple of decades. A number of these injuries result in permanent vision loss as a result of insufficient nearby medical facilities or even the proper tools to deal with them.

Researchers in the College of Los Angeles allow us a sophisticated material that medics can quickly deploy and that’s customized for various kinds of ocular trauma. Like superglue for that eyes. Initially developed being an adhesive for USC’s famous retinal implants, the glue, a hydrogel called PNIPAM, poly(N-isopropylacrylamide) has unique chemical qualities: when cooled, it might be a liquid for simple application, so when heated, it might be semi-solid with strong adhesive qualities. After a little modifications, they discovered that the hydrogel could form a good seal after being injected in to the eye and reaching the eye’s temperature. The operation is fully reversible simply by applying awesome water, which reverts the hydrogel back to a liquid condition for removal. Research on rabbit eyes demonstrated the hydrogel effectively improved intraocular pressures without inflammation or infection over four days.

Furthermore, they created a special portable syringe for that hydrogel. The syringe includes a cooling chamber filled with calcium ammonium nitrate crystals (those you discover in instant cold packs). Once the chamber is stuffed with water, the temperature from the syringe drops in under thirty seconds therefore the hydrogel becomes liquid and could be injected.

Anticipation would be that the special hydrogel/cooling syringe  combo is going to be utilized on the battlefields in addition to rural ER’s and mass casualty situations. Medics and first-responders can rapidly deploy the hydrogel to stabilize the individual until an ophthalmologist can repair the harm.

Journal abstract in Science Translational Medicine: A reversible thermoresponsive sealant for temporary closure of ocular trauma…

More information from USC: A brand new portable gel that may save an hurt eye…

Scott Jung

Scott Jung (@scottjung) is really a Plastic Valley-based health and medical technology journalist and advocate. He is a guest cause of Intel’s iQ e-magazine and Rock Health’s corporate blog and it has provided live, on-site coverage from the Worldwide CES and Digital Health Summit, TEDMED, and Stanford Medicine X conference for Medgadget. Most lately, he’s been appearing on TWiT.tv’s The Brand New Screen Savers like a semi-regular health and medical technology correspondent. Scott holds a b -.Utes. degree in Biomedical Engineering in the College of Los Angeles. Scott is definitely searching for the following big factor in medical technology and digital health. Thinking about helping him transform lives? Make contact with him at http://scottjung.internet

Stratasys Releases Type of Custom Made 3D Printed Anatomy Models


Stratasys, among the big 3D printing companies, has announced the discharge of their new BioMimics type of 3D printed human body models. These products are created to be utilized in clinical training and also to help design and test new medical devices.

The organization is first releasing bone and heart models, with vascular structures expected to be shown early the coming year. The models might have simulated disease areas that may further assist in testing new items as well as for training clinicians how you can do delicate surgical treatments. The organization hopes the printed BioMimics models can help alleviate the requirement of animal and cadaver models, and will be offering an simpler-to-use products which may be just like effective oftentimes.

The models can be found like a service, with companies and research institutions ordering the key they need for his or her applications. Stratasys consequently returns multi-material prints that may be both soft and hard, have different feel and textures, which mimic many of the characteristics from the anatomy they’re copying.

“BioMimics is really a revolution in medical modeling, taking advantage of advanced 3D printing approaches for clinically accurate representations of complex human anatomies – from microscopic patterns of tissue to replicating soft to hard texture of body structures,” said Scott Rader, GM of Healthcare Solutions at Stratasys. “Armed with unmatched realism of BioMimics, researchers, educators and manufacturers can finally make use of the tools to demonstrate out new ideas lengthy before numerous studies, and demonstrate innovations towards the skilled physicians who depend in it.Inches

Link: Stratasys homepage…

Via: Stratasys…

Editors

At Medgadget, we set of the most recent medical technology news, interview leaders within the field, and file dispatches from medical occasions from around the globe.

New Dental Material Can Resist Biofilm Growth And Kills Bacteria

Researchers in the College of Pennsylvania allow us an antibacterial resin for dental procedures for example cavity fillings. They hope the material can offer improved fillings that resist cavities and keep going longer.

Conventional materials for dental fillings are vulnerable to being covered in plaque, a sticky biofilm that can result in cavities and filling failure. Researchers in the College of Pennsylvania will work on developing something better. “Dental biomaterials like these,Inches stated Geelsu Hwang, a investigator active in the study, “need to attain two goals: first, they ought to kill pathogenic microbes effectively, and, second, they have to withstand severe mechanical stress, as occurs when we bite and chew.”

Hwang and the colleagues allow us a brand new dental resin which contains the antimicrobial agent imidazolium. Inside a key development, they chemically linked the antibacterial agent towards the resin, in order that it wouldn’t leach out in to the mouth area, but would only kill bacteria that are exposed to the resin. “This can help to eliminate the probability of antimicrobial resistance,” stated Hwang. This method does mean the resin is not likely to create any toxicity within the mouth, but can nonetheless be good at killing microbes on its surface.

They tested the material’s capability to kill microbes and stop the development of biofilms, whilst making certain it had the needed mechanical strength to supply a durable filling. The fabric effectively wiped out bacteria that contacted it and allowed only small quantities of biofilm to develop on its surface.

Once the team tested just how much shear pressure was needed to get rid of the biofilm in the material, they discovered that merely a really small pressure was needed to totally take away the sticky biofilm layer, whereas a pressure four occasions as strong could still not take away the biofilm from the control composite resin. “The pressure equal to going for a drink water could easily take away the biofilm out of this material,” stated Hwang.

Study in Applied Materials & Interfaces: Nonleachable Imidazolium-Incorporated Composite for Disruption of Microbial Clustering, Exopolysaccharide-Matrix Set up, that has been enhanced Biofilm Removal…

Via: College of Pennsylvania…

TPG Capital amends merger cope with Exactech

MDBR Staff Author Printed 05 December 2017

TPG Capital has amended its merger agreement around-based memory foam implant devices maker Exactech.

In October, TPG Capital decided to acquire Exactech for approximately $625m, while now it elevated the quantity to $737m through amendment towards the merger agreement.

Earlier, TPG had decided to purchase Exactech common stock by having to pay $42.00 per share, and today it’s agreed to get the common stock by having to pay $49.25 per be part of cash, representing a rise as high as 17.3% within the previous offer.

The board people of Exactech have approved the amended merger agreement with TPG, and suggested Exactech’s shareholders to approve the merger deal.

Susceptible to customary closing conditions, the offer is anticipated to accomplish within the first quarter of 2018.

Located in Gainesville of Florida, Exactech is active in the development and manufacture of memory foam implant devices and surgical instrumentation for extremities and enormous joints.

The firm offers its memory foam implant devices and related surgical instruments, in addition to biologic materials and services to hospitals and physicians.

Its memory foam products will be employed to restore joints and bones which are degenerated because of illnesses for example joint disease.

With around 700 employees, the organization distributes its products in around 35 countries around the world.

During the time of acquisition, Exactech Chief executive officer David Petty stated: “This agreement provides maximum value for the shareholders, who’ve shared our vision and supported our growth in the last 2 decades.Inches


Image: TPG’s Bay Area offices at 345 California Street.  Photo: thanks to Daniel Schwen.

Meet Versius, Cambridge Medical Robotics’ More Portable and price Effective Robot for Minimal Access Surgery

Cambridge Medical Robotics (CMR), located in the United kingdom, is focusing on revolutionizing the field of surgery by delivering exactly what the firm believes is generation x surgical robot. Handier, affordable, and simpler to make use of than other robots available on the market, CMR’s Versius product is already generating significant interest. The organization announced in September it had closed the series-A funding round with $26 million of investment, following a preliminary round in excess of $20 million in the finish of this past year.

Their mission would be to make minimal access surgery open to all individuals who require it by breaking lower the barriers that presently exist, such as the size, cost, and complexity of current surgical automatic systems

Versius, CMR’s first robot, uses five self-contained automatic surgical arms that are members of a slim, modular system. Each arm contains all of the intelligence and sensing abilities required to move itself as a result of a surgeon’s instructions and in addition it responds to touch from the assisting surgical staff. The modular design enables for any surgeon to get rid of arms that aren’t required for a process. To offer the needed degree of precision, the arms self-monitor their position and also the pressure they apply 5,000 occasions per second, which may be over a full-speed fighter jet calculating its location every 4 inches (10 cm).

We’d the pleasure of talking with CMR’s Chief executive officer Martin Frost about his vision behind the startup and also the company’s growth plans in in the future. Mr. Frost is definitely an experienced commercial business leader, with more than 20 experience in beginning, growing, and leading technology and medical device companies.

Alice Ferng, Medgadget: Let me know about Cambridge Medical Robotics. Who’s the pressure behind your invention and what’s your individual background?

Martin Frost, Chief executive officer of Cambridge Medical Robotics: Cambridge Medical Robotics is 150 people. We’ve accreted individuals individuals 3 . 5 years. The organization was began in The month of january 2014, so we anticipate finding yourself in a 15,000 sq foot building in North Cambridge inside a year, that is a significant purchase of doing manufacturing, integration, set up within the Cambridge area.

I’m 1 of four individuals who began the organization. All people have labored carefully together within the Cambridge, United kingdom area. We’ve labored a great deal in medical devices, R&D, and talking to. My very own background is this fact may be the sixth company that I’ve been involved with beginning and building. I’ve been very fortunate that a couple of individuals companies happen to be on the London Stock Exchange. The main reason we [Cambridge Medical Robotics] exist is the fact that all of us joined together to resolve a large problem: we feel that there are many people annually that do not get the right surgery, even though robots aren’t a brand new idea within the operating room.

Should you consider the world today, you will find 4,000 robots, doing 750,000 procedures, but most these surgeries are in urology. We feel that exactly what the market needed was an even more adaptable robot that may be afforded in a better cost.

Medgadget: What kinds of surgical applications are you currently targeting? So how exactly does your Versius robot vary from a method such as the da Vinci from Intuitive Surgical that’s been in the area for some time?

Mr. Frost:  The good reputation for the da Vinci robot is it was created for mitral valve repair, consider then, a lot of the procedures it’s been employed for has developed in the field of urology. We’re a multispecialty robot employed in all quadrants from the body, which more naturally leads to operations generally surgery, the upper and lower GI, colorectal, and hernia indications.

Should you take a look at our technology and just what we’re supplying – it’s an even more flexible, modular automatic platform where a bit of the automatic arms can be put flexibly round the patient within the operating room. This will make it simpler for that staff to utilize and move about the robot and patient within the operating room when compared with other robots.

Medgadget: Are you able to is there a problem from the portability and sizing of the robot?

Mr. Frost: These robots are lightweight, and for that reason also portable, and transportable. The present robots have to do with 800kg [1,700 lbs] heavy. Our modular automatic arms – the very first version that will perform a cart – are under 15kg [33 lbs] each.

We haven’t just designed these automatic arms to adjust to current systems, but rather have designed in the ground-up a brand new modular system that comes with newer technologies and materials that didn’t exist twenty years ago. It has enabled us to construct something which is considerably differentiated from what exists today.

Medgadget: You’ve pointed out the aim to lessen variations on price to create your robot less expensive. Exactly what does this seem like?

Mr. Frost: At the moment, the present robots are offered as costly capital, and also the consumables could be around 2,000-3,000 British pounds [~$2667-$4000 USD] each for 10 uses. The entire lifetime cost to have an existing robot can therefore be for sale six million pounds within the United kingdom [$8 million USD], that is very costly for hospitals that have little money.

We plan to supply our bodies like a service, such as the robot, all instrumentation, and maintenance included in an agreement in a fixed annual cost. So we plan to lessen the whole lifetime cost for any hospital up to thirty to forty percent.

Medgadget: How about your console and it is interface which make them easier accessible when compared with other robots?

Mr. Frost: The da Vinci System is comparable to a periscope system, in which the surgeon is hunched within the console. Frankly, there are plenty of surgeons who choose that, and you will find other surgeons who don’t like this. But most surgical staff don’t like this. They like open communication using the surgeon throughout the process. We’ve therefore designed our console to become open. Choices may either sit or fully stand up throughout the procedure. There exists a more contemporary console interface that’s similar to gaming, and also have received positive feedback with this. It’s also slimmer and much more portable compared to da Vinci console.

Medgadget: Do your controls include features for example haptic feedback?

Mr. Frost: While our controls can enable haptic feedback, chances are our first robots we’ll launch won’t enable which include. We all do get it planned already though. We’ve done greater than a dozen usability studies with many different feedback from surgeons. Some surgeons really like the optical feedback they achieve with a home operating-system.

One or two in our competitors curently have systems with haptic feedback, and we’re working with surgeons to find out when they do or don’t like this selection.

Medgadget: What exactly are your growth plans for the company continuing to move forward? Are you building other robots and targeting other parts of medicine later on?

Mr. Frost: We’ll launch our product initially in Europe, so we anticipate getting numerous systems getting used within the United kingdom through the finish of the coming year. We anticipate finding yourself in the U . s . States in 2019. Therefore the hope is to buy from 20-30 systems to 100 or even more during the period of 3 years. Within the finish, the marketplace appetite for which we’re doing for next-gen robots is countless systems each year. For instance, Intuitive Surgical sells about 400 systems annually today. Many people begin to see the existing market growing by a minimum of five occasions during the period of the following ten years, and we’d accept them.

We’re an english company, not in the U . s . States or California, and for that reason it has both pros and cons. We’re very acquainted with the restrictions hospitals need to be employed in in Europe. Which means that we spend a large amount of time working out the way we best position ourselves with this market. Being small implies that we don’t curently have a current business. We are able to have a commercially flexible method of the forex market.

We’re greatly searching forward into creating a bigger medical device company. We deliberately named our organization “Cambridge Medical Robotics” because we intend to build other robots continuing to move forward. However, our most significant priority is to buy good feedback from your first robot Versius, after which to visit after that.

Flashback: Cambridge Medical Robotics Showcases Its New Versius System

Link: Cambridge Medical Robotics